
Token Based Services - Differences from Privacy

Pass

Erinn Atwater
erinn@openprivacy.ca

Sarah Jamie Lewis
sarah@openprivacy.ca

DRAFT – Subject to further change and refinement.

1 Context: Prepaid Anonymous Services

We outline an approach to allow anonymous peers to (pre-)purchase services
(e.g. message hosting) from anonymous servers based on Privacy Pass [1].

Service providers offer the purchase of ”tokens” that can be later redeemed
for services in a similar way to how prepaid cards work.

Separating the act of purchasing tokens from using them provides several
advantages over purchasing the services directly, even if we assume the pur-
chasing method is completely metadata resistant. This separation allows us to
amortize the latency and transaction fees associated with cryptocurrency trans-
actions over several tokens, reducing friction after the initial investment. Also,
because tokens are unlinkable and fungible, peers can share tokens across devices
or even between group members, opening up the services to a wider audience
while preserving the privacy of individual users.

When considering payment channels that do not offer strong privacy protec-
tions, separating acquisition and redemption provides another tool for enabling
peers to manage risks to their anonymity.

This paper outlines the differences of our protocol from the original Privacy
Pass paper [1] and – except where specified – uses the same notation as that
paper. It is prerequisite reading for understanding what follows.

2 Differences to Privacy Pass

The major difference in approach from Privacy Pass is in our trigger for sign-
ing tokens. Instead of a challenge, we expect peers to purchase tokens directly,
executing the signing protocol over the purchasing channel (e.g. using Zcash
encrypted memos [4]. The redemption phase can then take place at an unspeci-
fied time in the future, free of purchasing metadata that might be used to track
usage.

Unlike the original Privacy Pass we require peers/servers to publish W = tk

when redeeming a token in addition to (t,MACK(R)). Both the peer and the
server know W , as it is necessary for calculating the shared secret K. Once
published, there is no longer any need to keep W a secret, and publishing it
openly does not harm the privacy of other tokens.

1

We use W as an additional constraint on the servers ability to sign tokens
using different public keys (see section 5.5 Key Consistency in the Privacy Pass
paper for details on this attack vector).

2.1 Constraining Token Signing

Peer Token Service (Y)

(u,W)←$SpentTokens

({T̃i}, u, returnAddress)

fk(T̃)← BatchSign({T̃i}, k)

πk ← Prove(k, Y, {T̃i}+ u, fk(T̃i) + uk)

({fk(T̃)}, πk)

P ← {T̃i}+ u

Q← {fk(T̃i)}+W

VerifyPRF(πk, Y, P,Q)

Figure 1: Token Payment and Signing: The client sends a set of blinded to-
kens {T̃i} over an encrypted payment channel (e.g. Zcash) along with a return
address and a previously publicly redeemed token u. The request must be ac-
companied by an adequate payment (accounting for both the cost of the tokens
themselves and the cost of sending a return message). Once payment is con-
firmed the server signs the tokens, along with the constraint token u, and sends
them back to the client, along with a proof πk demonstrating that the tokens
were signed correctly. Once the client has received the result, πk is checked after
which they can be unblinded and used to redeem services.

Previously published tokens1 are used to constrain the signing of newer to-
kens, by forcing the token provider to include them within the discrete-log equiv-
alence proof. We incorporate the token into the BatchDLEQ by treating it as
an additional blinded token/signed token pair where: P = T and Q = W = T k

(see Figure 1). The token is selected randomly2 from the set of SpentTokens
published publicly through the act of redeeming them. As such any valid token
for a service, regardless of the originator, can be used to constrain the batch
proof signing newer tokens and both sets of tokens are tied to the token servers
public key (Y = Xk).

1e.g. In one of the applications we are considering, the server maintains a publicly auditable
log of messages, including the token used to pay for those services. We expect peers to select
from this set of tokens.

2For now; in the future, we envision including spent tokens with server invitations in order
to create a gossip-esque mechanism to help prevent key partitioning attacks by the server.

2

2.1.1 Considerations for Key Rotation

Constraining signing proofs to previously used tokens obviously has an impact
on the ability to rotate keys. This can be handled much as described in the
original Privacy Pass paper, by having the server commit to a rolling set of
public keys, keeping the set size relatively low e.g. 2 or 3 at any one time. This
allows clients to use keys from a larger range in time, without restricting server
key rotation.

2.2 Request Binding

Peer Service (O)/Token Service (Y)

// Spend Token

K ← H(T‖W)

M ← MACK(O)

(t, M)

// Check Token

if t /∈ SpentTokens

W ← tk

K ← H(t‖W)

result← MACK(O)
?
=M

SpentTokens← (t,W) ∪ SpentTokens
else

result← false

result

Figure 2: Token Redemption: We require the server to maintain a public set
SpentTokens of previously used tokens. The redemption requests are bound to
the public key of the service O. On receipt of a redemption request the server
checks that the token t has not previously been spent, and it has not it checks
the MACagainst the derived key and the public key of the service. If all the
checks succeed, t is added to the set of SpentTokens.

In contrast to the Privacy Pass paper wherein redemptions are bound to a
particular requested resource, we bind requests to the public key3 of the service
being paid for (see Figure 2).

This explicit binding to the service prevents a rogue token server from act-
ing as middleperson for an unrelated service (e.g. by forwarding on all sign-
ing/redemption requests and responses while charging a premium) by having
services reject any token redemption that isn’t bound to their public identifier.

3For clarity, this is not the public key Y used for token signing, but an identity key used to
identify the service over some anonymous communication network e.g. a Tor v3 onion address

3

3 Parameterization

For our implementation4 we use Ristretto255 [3] as the cyclic group of prime
order. In addition, we use Merlin transcripts [2] to generate the challenges used
in the protocol rather than a standalone hash of the public inputs directly.

References

[1] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Fil-
ippo Valsorda. Privacy pass: Bypassing internet challenges anonymously.
Proceedings on Privacy Enhancing Technologies, 2018(3):164–180, 2018.

[2] Henry de Valence. Merlin transcripts. https://merlin.cool/, 2018.

[3] Henry de Valence, Jack Grigg, George Tankersley, Filo Valsorda, and Isis
Lovecruft. The ristretto255 group. Technical report, IETF CFRG Internet
Draft, 2019.

[4] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash pro-
tocol specification. Tech. rep. 2016–1.10. Zerocoin Electric Coin Company,
Tech. Rep., 2016. Section 3.2.1.

4https://git.openprivacy.ca/openprivacy/zcashtokenservice

4

